

## TMA 402 Fx 测量向导

文件编号: cPH60-TMA-02

## 目录

开机 气体与液氮 样品制备与装样 压缩/针入模式 拉伸模式 三点弯曲模式 编辑测量参数 开始测量 测量运行 测量完成

## 1. 开机

打开计算机与 TMA 402Fx 主机电源。打开恒温水浴。

一般在水浴与仪器打开 2~3 小时后,可以开始测试。如需达到更稳定的测试效果,建议水浴与主机提前一晚开机。



确认测量所使用的炉体类型(SiC 高温炉,或 Steel 低温炉)。

检查仪器上当前安装的支架与推杆类型(包括材质(石英、氧化铝)、形变模式(压缩、针入、拉伸、 三点弯曲))是否适用于接下来的测量。如果不合适,则需更换合适的样品与推杆。





关于不同支架类型的相关应用,详见《TMA 测量附注》。 关于更换支架操作,详见《TMA 仪器维护》。

## 2. 气体与液氮

确认测量所使用的吹扫气类型。

根据不同的样品与应用,常用的气氛条件有 N2(高分子常用)、 air(陶瓷类常用)、Ar(金属类常用)、He(负温测试较适用, 常规测试也可用于改善控温)、静态空气(即不通气氛)等。

如使用动态吹扫气氛,确认仪器是否连接了合适的气体钢瓶, 及瓶中剩余气体量是否够用。气体钢瓶减压阀的出口压力(显示的是高出常压的部分),通常调到0.5bar左右,最高不能超出 1bar,否则易于损坏质量流量计MFC。 对于低温炉在负温下的测试,则需要准备足够的液氮。



#### 3. 样品制备与装样

以下装样操作,示意图中的支架均为石英支架。氧化铝支架的装样操作可借鉴参考。

#### 3.1 压缩/针入模式

制备合适尺寸的样品。





对于陶瓷、玻璃、金属类材料的线膨胀系数测量,在样品方便加工的情况下,通常建议将样品加工成与标样相同的尺寸规格。(最常见的标样规格为直径 6mm,长 25mm。另有长 12mm、20mm 等其他规格可选)。样品在测量方向上的两个端面,必须保证平行而光滑。

对于塑料粒子一类的样品,以及玻璃化转变点、软化点等测试应用,则不受此限。

测定样品在室温下、测量方向上的长度:



或使用测量软件中的"在测量开始时自动"功能测量样品长度,具体操作步骤,详见《TMA测量附注》。

打开炉体:



当炉子升至最高位置时,往左或往右旋转 30°固定,按按钮提升推杆,插入样品,使样品处于中心位置, 按按钮下降推杆使与样品接触。







注:如果是使用 Al2O3 膨胀支架,每次放上样品后,要按面板前"tare force"键进行清零,消除样品重力的影响。

必要时调整热电偶位置。

关于热电偶位置的相关讨论,详见《TMA 测量附注》。

随后将炉体旋回中间位置, 按按钮降下炉体。



## 3.2 拉伸模式

剪取一定长度的样品 (薄膜条或纤维丝)。

按以下步骤所示,使用拉伸制样辅助工具,将样条夹持到样品夹(tension bands)上,最终安装到支架上:







| Image: Construction of the stripes                                                   | clamp<br>clamp<br>clamp<br>bog edge bort edge sample stripe                                                                                                |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7. 对于较厚的样品,建议在 tension bands 的螺丝外侧,即不接触样品的一侧加上小的样品碎片,以便加上 clamp 后两侧高度平衡,拧 nut 时受力均匀。 | 8. 加上 clamp 和 nut,用配套的内六角螺丝刀拧住<br>nut 以使 clamp 夹住样品(注意拧 nut 的力不要太大,<br>以防部件损坏。另 clamp 有全平的和带尖的两种。<br>若使用带尖的 clamp,应使尖齿侧夹住样品,如上<br>图所示)。                    |
| retaining<br>spring                                                                  | 10. 对于要求不是特别高的测试,可直接使用<br>distance plate 的长度(使用卡尺测量)作为样品长<br>度,并在编辑测量参数时输入操作界面中。<br>如希望更精确地获取样品长度,可使用测量软件中<br>的"在测量开始时自动测量样品长度"功能。具体<br>操作步骤,详见《TMA 测量附注》。 |
| <b>9</b> . 再次稍稍松开 fixing screw,将 retaining spring 转到两侧。取出样条(用 tension bands 夹住的样品)。  |                                                                                                                                                            |

样品制备好后,按按钮升起炉体。将炉体转动至一侧:







按动按钮(单箭头较慢,双箭头较快),调整推杆至合适位置。 装上样条。

按动向下的按钮, 推杆会按照程序中设定的预置力将样条拉紧:







转回并合上炉体:



## 3.3. 三点弯曲模式

制备合适长、宽、高的棒状样品,将其搁到三点弯曲支架的两个支点上。



长一点的样品,可以搁在外侧两个支点上。 短一点的样品,可以搁在内侧两个支点上。 按动按钮,使推杆顶住样品中心。 合上炉体,进行样品测试。

#### 4. 编辑测量参数

以下以改性聚苯醚 MPPO 塑料粒子的压缩模式测试为例, 演示测量程序的编制过程。

打开 TMA 402F1 测量软件,等待几秒钟,待软件与仪器建立通讯:



点击测量软件"文件"菜单下的"新建"(工具栏按钮 🗋),创建新的测试:

| 🕌 TMA 402F1 在 1-414/6 ; 测量 |      |        |       |       |        |   |  |  |  |
|----------------------------|------|--------|-------|-------|--------|---|--|--|--|
| 文化                         | ‡(F) | 编辑(E)  | 查看(V) | 测量(V) | 图形(M)  | _ |  |  |  |
| 1                          | 新建   | ≹(N)   |       |       | Ctrl+N |   |  |  |  |
| 12                         | 打开   | F(O)   |       |       | Ctrl+O | ۲ |  |  |  |
| 2                          | 仪器   | ¥设置(I) |       |       |        |   |  |  |  |

注:此处测试不作标样基线扣除,而使用分析软件中自带的"样品支架"模式对系统膨胀进行修正,故 使用"新建"创建新的测量。

对于有些样品,如果需要做标样基线扣除,则需事先准备好合适的基线文件,在此处则用"打开"功能 打开基线文件,在基线基础上进行参数设定。

关于标样基线扣除(基线修正): 在 TMA 的升温测试过程中,除样品受热膨胀外,支架与推杆处于高温 区的部分同样会受热膨胀。最终 LVDT 测到的,事实上是样品、支架、推杆三者膨胀的综合信号。后两 者可笼统称为"系统膨胀"。"基线修正"的目的,就是为了获取与样品相近的测试条件下的系统膨胀数 据。随后使用"修正+样品"模式进行样品测试,就可从样品实测数据中扣除系统膨胀部分,而获取样 品本身真正的膨胀数据。相关更详细的原理描述及校正操作方法,详见《TMA 基线修正》。

点击"新建"后,将弹出"测量设定"对话框。该对话框的第一页面为"设置",在此处进行仪器相关 硬件配置的确认(包括炉体类型,测量模式,支架类型,在测量之前用于压住样品的静态力,样品长度 测定模式,等等):



|                   | 劉祖                                                     |          |
|-------------------|--------------------------------------------------------|----------|
| 仪器名称              | TMA 402F1 (TMA402F1-0015-M) 在 USBc1-414/6              | 修改仪器名称   |
| 炉体 (')            | Low Temp Steel K TC: K (-200 1000°C/ 50 K/min)         | 🗌 禁用风扇控制 |
| 则重模式(1)           | Standard Expansion                                     |          |
| 样品支架 (1)          | Fused silica (Expansion - curved) TC: K (-200 1000 °C) | 样品支架图片   |
| 起始阈值              | 7.5 K, 加热: (20 K/min,30 min), 冷却: (50 K/min,300 min)   | 修改起始阈值   |
| ·<br>设备           | MFCs, LN2 cooling, AUTOVAC 400 (旋转泵)                   | 显示配置     |
| 特殊仪器控制            | 无                                                      |          |
| STC (1)           | 开启                                                     |          |
| 热电偶校正 (50 °C) (¹) | 开启                                                     |          |
| 静态力               | 0.0500 N                                               | 修改静态力    |
| 样品长度测定 (')        | 手动输入                                                   |          |
| 温度限制设备.           | No special device                                      |          |
| 紧急温度              | 高出最高段温度: 25 K                                          | 重新设定增重   |
|                   |                                                        |          |

硬件配置确认后,点击对话框右下角的"下一步"按钮,进入"基本信息"页面:

| <ul> <li>&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;</li></ul> | 4400<br>名称: mPPO<br>形状: 圆柱体<br>长度: 1.63 mm<br>直径: 2.7 mm                                                                                    |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|
| 温度校正:<br>◎ 不使用<br>◎ 使用所选                                                                                                                            | 设备         数值           吹扫气 1 MFC         AIR(80/20)           吹扫气 2 MFC         NITROGEN           保护气 MFC         NITROGEN           改变气体 |  |
| 2:WETZSCH\Proteus61\cal\Fused_si_ne.sd<br>选择<br>注:<br>目于操作向导的示范测试                                                                                   |                                                                                                                                             |  |



在"测量类型"中选择"样品"模式,填入实验室、项目、操作者、材料类别等相关信息。根据需要,选择适当的温度校正文件,或不使用温度校正(详见《TMA温度校正》)。在"样品支架材料表"中确认对应的支架材料表。在"样品"项目中输入样品的名称、编号,选择样品形状(圆柱体,立方体,不规则体等),输入样品尺寸信息。若为手动测量样品长度,此处可直接填入样品长度。确认测量所使用的气体。

关于样品支架材料表:点击相应的"选择"按钮,可选择合适的支架材料表(理论膨胀数据)。支架材料对应的理论膨胀表默认存于安装路径的 cal 子路径下。一般石英支架选择 Fused\_si\_ne.scl 文件,氧化 铝支架则选择 Al2O3ne.scl 文件:

| 🕌 选择样品支架      | 是材料 - C:\NE    | TZSC  | H\Proteus61    | \cal               |                 |               |        | 2      | × |
|---------------|----------------|-------|----------------|--------------------|-----------------|---------------|--------|--------|---|
| Look in:      | 🔒 cal          |       |                |                    | •               | G 🜶 📂 🖽•      |        |        |   |
| 1             | Name 🔺         |       |                | -                  | Date modified   | ▼ Type        | - Size | -      |   |
| 3             | Al2o3.sc       | 1     |                | 373                | 2007-7-11 15:32 | CPS4 Document |        | 6 KB   |   |
| Recent Places | Al2o3ne        | scl   |                |                    | 2009-7-20 14:19 | CPS4 Document |        | 2 KB   |   |
|               | Fused_s        | .scl  |                |                    | 2007-7-11 15:33 | CPS4 Document |        | 6 KB   |   |
|               | 👺 Fused_s      | _ne.s | d              |                    | 2010-1-28 14:08 | CPS4 Document |        | 3 KB   |   |
| Desktop       | glass_c.       | scl   |                |                    | 2007-7-11 15:33 | CPS4 Document |        | 7 KB   |   |
| <u></u>       | Graphite       | .scl  |                |                    | 2007-7-11 15:34 | CPS4 Document |        | 7 KB   |   |
|               | Inconel6       | 00.sd |                |                    | 2007-9-18 10:59 | CPS4 Document |        | 3 KB   |   |
| Libraries     | Platinum       | .scl  |                |                    | 2007-7-11 15:34 | CPS4 Document |        | 6 KB   |   |
|               | Platinum       | -TPM. | scl            |                    | 2010-7-21 13:40 | CPS4 Document |        | 2 KB   |   |
|               | Pyrocera       | m960  | 6.scl          |                    | 2008-9-17 7:05  | CPS4 Document |        | 2 KB   |   |
| Computer      | Sapph_n        | e.sd  |                |                    | 2010-2-1 16:57  | CPS4 Document |        | 6 KB   |   |
|               | Sapphire       | .scl  |                |                    | 2007-7-11 15:36 | CPS4 Document |        | 6 KB   |   |
|               | Tungster       | n.sd  |                |                    | 2007-7-11 15:37 | CPS4 Document |        | 6 KB   |   |
| Network       |                |       |                |                    |                 |               |        |        |   |
|               | File name:     |       | Fused_si_ne.s  | cl                 |                 |               | •      | Open   | I |
|               | Files of type: |       | 标准膨胀数据         | Ę                  |                 |               | •      | Cancel | i |
| ☑ 锁定此目录       |                |       | 11112200100220 | •                  |                 |               |        |        | 1 |
| 文件/包含参数       |                | 内容    |                |                    |                 |               |        |        |   |
| 🛛 🔤 基本参数      | <u>ل</u>       | 描述    | Ŕ              | 数值                 |                 |               |        |        |   |
|               |                | 材料    | 4:             | FUSED SILICA       |                 |               |        |        |   |
|               |                | 来源    | E:             | NETZSCH            |                 |               |        |        |   |
|               |                | 备注    | E              | >800 extrapolated  | ł               |               |        |        |   |
|               |                | 温度    | ₹下限:           | -200 °C            |                 |               |        |        |   |
|               |                | 温度    | ≹上限:           | 1100.00 °C         |                 |               |        |        |   |
|               |                | 文件    | 名:             | Fused_si_ne.scl    |                 |               |        |        |   |
|               |                | 日期    | 月/时间:          | 2010-1-28 20:47:41 |                 |               |        |        |   |
|               |                | 操作    | 音:             |                    |                 |               |        |        |   |

关于气体类型: 根据测量需要及仪器实际连接的气体类型, 点击"改变气体"可进行设定更改:



| Nr       | 选择       | 类型 | 名称             | 化学式   | 密度<br>/mg/ml | 范围 /ml/min | 添加                                                                                                   |
|----------|----------|----|----------------|-------|--------------|------------|------------------------------------------------------------------------------------------------------|
|          | <b>v</b> | 预设 | NITROGEN       | N2    | 1.250        | 250        | 18改…                                                                                                 |
| 2        |          | 预设 | OXYGEN         | 02    | 1.429        | 254        |                                                                                                      |
| 5        |          | 预设 | ARGON          | Ar    | 1.784        | 244        |                                                                                                      |
| ł.       |          | 预设 | HELIUM         | He    | 0.179        | 210        | _8-                                                                                                  |
|          |          | 预设 | CARBON DIOXIDE | CO2   | 1.977        | 134        | 亚小                                                                                                   |
| <b>i</b> |          | 预设 | AIR(80/20)     | N2/02 | 1.293        | 260        |                                                                                                      |
|          |          |    |                |       |              |            | <ul> <li>● 仅在激活时</li> <li>● 始终</li> <li>● 储存</li> <li>● 从不</li> <li>● 仅在激活时</li> <li>● 始终</li> </ul> |

以上项目设定完成后,点击"下一步"按钮,进入温度程序设定界面:





本例所使用的温度程序为: 26℃ ... 5K/min, N2, 50mN ... 250℃,则先将"开始温度"处改为 26(对于 从室温附近开始,且无需扣除基线的测试,一般可将起始温度直接设为合上炉子并稳定之后的当前实际 温度),F0 设为 0.05N,将吹扫气 2(假设接的是 N2)和保护气左侧打上勾,流量一般用默认值(对于 N2,保护气/吹扫气各为 20ml/min)即可。点击"增加","温度段类别"自动跳到"动态",设定界面 变为:

| 俚设定                                                                                                                                                                     | È                                                                                                |          |                            |          |                                                       |           |                             |            |     |       |    |                   |                                                                                           |                                      | ? > |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------|----------------------------|----------|-------------------------------------------------------|-----------|-----------------------------|------------|-----|-------|----|-------------------|-------------------------------------------------------------------------------------------|--------------------------------------|-----|
| i 🍚                                                                                                                                                                     | 设置 🔵 基本                                                                                          | [信息] 🝚 🧃 | 温度程序 ┃ 🝚 :                 | 最后的条目    |                                                       |           |                             |            |     |       |    |                   |                                                                                           |                                      |     |
| Nr                                                                                                                                                                      | 类型                                                                                               | °C ; F1  | K/min ; TR                 | Time ; A | pts/min ; D                                           | pts/K ; T | F                           | 0 ; Cycles | STC | N2/02 | N2 | N2                | LN2 功革                                                                                    | ☑ 基本                                 | 真空  |
| 1                                                                                                                                                                       | <b>•</b>                                                                                         | 26.0     |                            |          | 抽真空 + 充气                                              | ĩ         | _                           | 0.0500     | Γ   | 0     | 20 | 20                | 关 <b></b> n/a                                                                             | n/a                                  |     |
| 授券<br>S<br>S<br>C<br>C<br>C<br>C<br>N<br>T<br>C<br>N<br>T<br>に<br>、<br>S<br>の<br>に<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の | 4<br>TC<br>扫气 1 MFC<br>开启<br>(80/20)<br>扫气 2 MFC<br>开启<br>ROGEN<br>护气 MFC<br>开启<br>ROGEN<br>2 冷却 | 20       | ml/min<br>ml/min<br>ml/min |          | 终止温度:<br>升温速率<br>采样速率:<br>采样速率:<br>采样速率:<br>Po 0.0500 | □ 1       | C<br>/min<br>ts/K<br>ts/min |            |     |       |    | 步 初初 <b>动恒</b> 结结 | <b>彩分类</b><br>術給<br>容温<br>東<br>東<br>手<br>待<br>一<br>里<br>新<br>当<br>插入动<br>插<br>五<br>次<br>術 | ■<br>■<br>1<br>前<br>森<br>温<br>段<br>段 |     |
|                                                                                                                                                                         | 12  天闭<br>冷却功率<br>初始功率<br>朝空                                                                     | <u> </u> | 6                          | F0       | - <b></b> л                                           | F0        |                             |            |     |       |    | 「「「「「」」」          | 除当<br> 数<br> 号:<br>!计:                                                                    | 前段                                   | 0   |

在"终止温度"处输入 250,"升温速率"处输入 5,采样速率可使用默认值,力保持"静态"与 0.05N 不变。点击"增加",再在"温度段类别"处选择"结束",界面变为:

| - Ki                                                              | 五  🤍 基4                                   | 1月記   🤍 油 | 11受柱序   🤝 1 | 反后的余日    |             |                         |        |            |     |       |    |        |                                    |                         |     | _ |
|-------------------------------------------------------------------|-------------------------------------------|-----------|-------------|----------|-------------|-------------------------|--------|------------|-----|-------|----|--------|------------------------------------|-------------------------|-----|---|
| Ir                                                                | 类型                                        | °C ; F1   | K/min ; TR  | Time ; A | pts/min ; D | pts/K ; T               | F      | 0 ; Cycles | STC | N2/02 | N2 | N2     | LN2                                | 功率                      | 基本  | 真 |
|                                                                   | <u> </u>                                  | 26.0      |             |          | 抽真空 + 充气    | ζ                       | _      | 0.0500     | Γ   | 0     | 20 | 20     | ×٦                                 | n/a                     | n/a | Γ |
|                                                                   |                                           | 250.0     | 5.000       | 0:44:48  | 75.00       | 15.00                   | _      | 0.0500     |     | 0     | 20 | 20     | ×⊾                                 | n/a                     | n/a | Γ |
| STC<br>吹扫 <sup>4</sup><br>□ 开<br>AIR(80<br>吹扫 <sup>4</sup><br>○ 开 | :<br>肩<br>0/20)<br>气 2 MFC —<br>启<br>0GEN | 0 n       | nl/min      |          | 紧急复位》       | LE度: 275.0<br>F0 0.0500 | ľ<br>N | 2          |     |       |    | 初初动恒錯结 | 始等待<br>始<br>ふ<br>温<br>東<br>東<br>等待 | ÷                       |     |   |
| 保护                                                                | 气 MFC ——<br>启<br>DGEN                     | 20 r      | nl/min      |          |             |                         |        |            |     |       |    |        | 更插                                 | <b>増加</b><br>新当育<br>入动惑 | 般   |   |
|                                                                   |                                           | _         |             |          |             |                         |        |            |     |       |    |        | 插                                  | 入恒温                     | 殿   |   |
| IY #<br>NITRC<br>LN2 ☆<br>LN2                                     | ≫却<br>│关闭                                 | <u> </u>  |             |          |             |                         |        |            |     |       |    |        | 刪                                  | 际当日                     | 142 |   |

# NETZSCH

"紧急复位温度"与温控系统的自保护功能有关,指的是万一温控系统失效,当前温度超出此复位温度 时系统会自动停止加热。该值一般使用默认值即可(默认为终止温度+25℃。在"设置"选项卡的"紧 急温度"中可修改此默认值)。F0则为测试结束后,推杆恢复到使用多大的力压住样品。此处使用默认 的 50mN。



此时温度程序的编辑已经完成,"结束等待"段一般不必设置。如果需要对上述设置进行修改,可直接 在编辑界面上侧的温度程序列表中点入编辑;如果没有其他改动,可点击"下一步",进入下一步骤。

关于温度程序编辑的其他相关问题,如"初始等待"、"结束等待"、STC、"更多功能"等,以及一些更 复杂的温度程序的编制示例,参见《TMA 测量附注》。

温度程序确认或调整之后,点击"下一步",进入"最后的条目"页面。在此页面中确认存盘文件名:



| 夏望设定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 文件名     ●     选择…                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Hittige and the second seco |
| Save in: 🚺 Data 💽 🌀 🎓 🖽 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| File name: mPPO Save                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Save as type: TMA 402F1 样品文件 Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

# 最后点击下方"测量"按钮:

| _ (B)/ul |                   |    |        |         |
|----------|-------------------|----|--------|---------|
|          | 🝚 输入完成 🛛 🕤 输入需要校验 |    | 无法存取页面 | ⊖ 输入不需要 |
| <- 上一步   | 确定                | 测量 | 取消     | 下一步->   |

软件自动退出上述实验设定对话框,并弹出"TMA 402Fx 在...调整"对话框。

### 5. 开始**测**量

点击"诊断"菜单下的"炉体温度"与"查看信号",与"调整"对话框放在一起。如下图:





点击上图"调整"对话框中的"设置初始力/气体"按钮,可观察到"查看信号"对话框中的"实际力"项目变为温度程序"起始"段的力值,气体流量(此处使用 P2 与 PG)则被调整为起始段的气体流量,并自动弹出"气体与开关"对话框。

此时观察仪器状态满足如下条件:

1. 炉体温度、样品温度相近而稳定,且与设定起始温度相吻合。

2. 力值、气体流量稳定。

3. DIL 信号稳定基本无漂移。

即可点击"开始"开始测量。

注: "TMA 402Fx 调整"对话框左下角的"偏移量"默认为 0um (0.00%),此时测量范围为±2500um,即所能检测到的样品相对于室温下的最大膨胀量为 2.5mm,最大收缩量为-2.5mm。

这一偏移量可根据样品的实际情况进行调整。比如样品在测量过程中会发生大的收缩,收缩量将近-4mm,这时也可点击下拉框,选择偏移量为"1500um(30%) 预期大的收缩量",初始信号调整在接近+1500um,此时所允许的最大样品收缩量即为-4000um,但正(膨胀)方向的量程就很有限了。反之亦然。



| TMA 402F1 在            | 1上调整          |              | <u>? x</u> |
|------------------------|---------------|--------------|------------|
| DIL                    | 实际力           | 开始           |            |
| 2500                   | 0.6           | 设置初始力/气体     |            |
| 1500                   | 0.4 =         |              |            |
| 500                    | 0.2           | 提升装置解锁定      |            |
|                        |               | 退出           |            |
| -1000 -                | -0.2          |              |            |
| -1500                  | -0.4 <u> </u> | ┌预加热\预冷却阈值── |            |
| -2500 —                | -0.6          | 阈值:          | 7.5 K      |
| 5000µm 💌               |               | 当前差别:        | 0.0 K      |
| R 0.0% - 就绪            |               |              |            |
| 不使用温度校正                | E!            |              |            |
| 准备在 <mark>26.0℃</mark> | ± 7.5K 开始     |              |            |
| <br>- 伯牧母 ———          |               |              |            |
| 価が生                    |               |              |            |
| 0 µm (0.00 %           | 6) 标准         |              | <u> </u>   |
| 0 µm (0.00 %           | う 标准          |              |            |
| -1500 µm (-3           | 0.00 %) 预期    | 大的膨胀里        |            |
| 1500 µm (30.           | 00 %) 预期      | 大的收缩里        |            |
| 100500                 |               |              |            |

此外,下拉框中的偏移量设定还可以进行修改或添加。点击"修改/添加选项"按钮:

| Г | 偏移里           |         | - |
|---|---------------|---------|---|
|   | 0 µm (0.00 %) | 标准    ▼ |   |
|   | 修改\添加项目       | 4       |   |

进入如下对话框:

| 添加/修改偏移里                 |                 |                    | <u>? ×</u> |
|--------------------------|-----------------|--------------------|------------|
| 「偏移里                     |                 |                    |            |
| 绝对值 <b>/</b> µm          | 相对值 /%          | 描述                 |            |
| 0                        | 0.00            | 标准                 |            |
| -1500<br>1500            | -30.00<br>30.00 | 预期大的膨胀里<br>预期大的收缩里 |            |
|                          |                 |                    |            |
| 이                        | µm 0.00 %       | % 标准               |            |
|                          | 増加              | 修改 删除              |            |
| 请输入一个在 -2500 2500 范围内的数字 |                 |                    |            |
| 确定取消                     |                 |                    |            |



在此对话框中可新增不同的偏移量设定,或修改现有的项目。所作的修改及新增项目将反映在"调整" 对话框的"偏移量"下拉框中。

另,选择不同的起始偏移量,只是测量开始时位移传感器的物理零位不同,但不影响相对的长度变化测 试。在测量开始之时,仪器会自动根据当前偏移量进行数字归零。

测量界面为:



在测量界面中显示的是尚未经过修正("样品支架"修正,或标样基线扣除)的原始曲线。一旦载入到 分析软件中,曲线即自动得到修正。

#### 6. 测量运行

如果需要在测试过程中将当前曲线(已完成的部分)调入分析软件中进行分析,可点击"附加功能"菜 单下的"运行实时分析"。

如果需要提前终止测试,可点击"测量"菜单下的"终止测量"。

关于测量过程中其他可使用的软件功能的描述,详见《TMA 测量附注》。

#### 7. 测量完成

待炉体温度降至150℃以下后,按动开炉按钮升起炉体,将炉体推至侧面,按动相关按钮升起推杆或松 开样品。取出样品。再按动按钮合上炉体。





点击"工具"菜单下的"运行分析程序",将测量曲线调入分析软件中进行分析。





关于数据分析过程,详见《TMA 数据分析向导》。

 耐驰科学仪器商贸(上海)有限公司 应用实验室 徐梁,汪霞云 初稿: 2014.3.
 最后修订于: 2015.4.
 基于 Proteus 6.1 版 技术支持邮箱: <u>nsi-lab@netzsch.com</u> <u>www.netzsch.com</u>